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Summary  

The exchange of metabolites mediates algal and bacterial interactions that maintain ecosystem 

function. Yet, while 1000s of metabolites are produced, only a few molecules have been identified 

in these associations. Using the ubiquitous microalgae Pseudo-nitzschia sp., as a model, we 

employed an untargeted metabolomics strategy to assign structural characteristics to the 

metabolites that distinguished specific diatom-microbiome associations. We cultured five species 

of Pseudo-nitzschia, including two species that produced the toxin domoic acid, and examined 

their microbiomes and metabolomes. A total of 4826 molecular features were detected by tandem 

mass spectrometry. Only 229 of these could be annotated using available mass spectral libraries, 

but by applying new in-silico annotation tools, characterization was expanded to 2710 features. 

The metabolomes of the Pseudo-nitzschia-microbiome associations were distinct and 

distinguished by structurally diverse nitrogen compounds, ranging from simple amines and 

amides to cyclic compounds such as imidazoles, pyrrolidines, and lactams. By illuminating the 

dark metabolomes, this study expands our capacity to discover new chemical targets that facilitate 

microbial partnerships and uncovers the chemical diversity that underpins algae-bacteria 

interactions. 

1.  Introduction 

Numerous organic molecules have been shown to facilitate ecologically important partnerships, 

including signaling molecules used for cell-cell communication and the exchange of organic 

nutrients as sources of energy, carbon and essential metabolites (Armbrust et al., 2004; Amin et 

al., 2012, 2015). Diatoms have received particular attention in this context as several studies have 

identified important microbial partners and some of the metabolites that maintain these 



partnerships (Amin et al., 2015; Shibl et al., 2020). However, microalgae cells, their phycosphere 

(the surrounding exudate layer) and the external metabolite pool (dissolved metabolites in 

seawater) consist of thousands of diverse compounds, many of which are inaccessible to current 

analytical approaches. This has hampered our ability to assign structural characteristics to this 

“chemical dark matter” (da Silva et al., 2015), keeping their ecological role invisible. The goal of 

this study was to design an approach to describe the chemical diversity of complex metabolite 

pools more comprehensively than is afforded by common analytical approaches in an effort to 

catalyze the discovery of new chemical tokens that mediate algae-bacteria interactions. 

This work was done with the ecologically significant diatom genus Pseudo-nitzschia; some 

members of this genus produce the potent neurotoxin domoic acid (DA), which bioaccumulates 

in the aquatic food web endangering the health of apex marine predators and humans (Lelong et 

al., 2012; Trainer et al., 2012). Recent studies show that interactions between Pseudo-nitzschia 

and its associated microbiome, which varies by Pseudo-nitzschia species, can promote Pseudo-

nitzschia growth and DA production (Bates et al., 1995; Guannel et al., 2011; Sison-Mangus et 

al., 2014; Amin et al., 2015). Amin et al. (2015) showed that these microbial interactions are highly 

complex and can be very exclusive. In particular, marine bacteria of the genus Sulfitobacter (strain 

SA11) were shown to enhance the growth of one Pseudo-nitzschia strain, while having no impact 

on other strains. This mutualistic partnership appeared to consist of the exchange of nutrients, 

such as ammonia and organosulfur compounds, and cell-cell communication via the signaling 

molecules tryptophan and indole-3-acetic acid.  

In general, metabolomes are dictated by genetics and environmental growth conditions. 

Metabolites found in the dissolved phase could derive from excess production by the algae, cell 

lysis or are intended for intra- and interspecies interactions. On the other hand, distinct 

microbiomes may produce different metabolites themselves or they influence the physiology and 

therefore, the intra- and exometabolites produced by algae. The bacteria might also act as “gate 



keepers” for the release of metabolites into the surrounding media and as “transformers'' of 

metabolites. Since previous studies have suggested that metabolites secreted by Pseudo-

nitzschia regulate relationships between its species-specific bacterial assemblages (Sison-

Mangus et al., 2014), we hypothesized that metabolomes of individual Pseudo-nitzschia cultures 

must be species-specific as well. Five different species of Pseudo-nitzschia were cultured and 

their associated microbiomes were identified using 16S ribosomal RNA (rRNA) sequencing. We 

postulated that both dissolved and intracellular metabolites could be relevant for maintaining and 

differentiating microbial interactions and partners, which led to the analysis of the dissolved 

metabolome and whole metabolome (intracellular plus dissolved). 

Our approach employed an untargeted metabolomics strategy, coupling liquid chromatography 

(LC) with high resolution tandem mass spectrometry (MS/MS), to characterize the chemodiversity 

within Pseudo-nitzschia cultures. In order to compensate for the limited applicability of mass 

spectral libraries to the marine environment, we advanced the use of a number of recently 

developed in-silico tools to better characterize unknown molecules. This approach enabled the 

most comprehensive cataloging to date of the broad chemical classes present in a laboratory 

algal culture and in doing so, illuminated the chemical characteristics of metabolites that 

differentiate metabolomes of Pseudo-nitzschia cultures. Our findings provide a foundation for a 

more complete understanding of microbe-microbe interactions, including insights into how these 

interactions may contribute to maintaining and sustaining harmful algal blooms. 



2.  Experimental Procedures 

Detailed methods are described in the Supplementary Information; workflows demonstrating the 

experimental setup and computational tools used to analyze and annotate MS/MS data are 

visualized in Fig. 1.  

2.1 Experimental setup and data acquisition 

Five unialgal Pseudo-nitzschia cultures isolated from Californian coastal waters were grown in 

duplicate in natural seawater media until stationary phase (Fig. S1). Pseudo-nitzschia cells and 

attached and free-living bacteria were also enumerated during growth by epifluorescence 

microscopy following 4′,6-diamidino-2-phenylindole (DAPI) staining (Fig. S2). To determine the 

active microbial community, we extracted RNA from cell pellets (centrifuged 90 mL of culture 

samples) and sequenced the v4-v5 region of 16S rRNA gene. To determine how much carbon 

was accumulating as dissolved metabolites in each culture, dissolved organic carbon (DOC) 

concentration was determined for the natural seawater growth media blank and each culture at 

the time of harvesting. Pseudo-nitzschia-microbiome associated metabolomes were examined in 

both dissolved and whole metabolome samples: dissolved metabolites were isolated in duplicate 

50 mL culture samples after filtration through GF/F filters, and whole metabolites were isolated in 

duplicates of 50 mL unfiltered culture samples that were ultrasonicated for 30 minutes. Duplicates 

of media blanks for each treatment, dissolved and whole metabolome, were taken as well. 

Samples were acidified (pH2, hydrochloric acid), solid phase extracted (Bond Elut PPL resin) and 

eluted in methanol (Dittmar et al., 2008; Petras et al., 2017). The extracts were dried down, re-

dissolved in 100 µL methanol with 1% formic acid of which 10 µL were subjected to ultra-high 

performance liquid chromatography (UPLC; C18 core-shell column) electrospray ionization 

(ESI+) mass spectrometry (MS). A Q-Exactive orbitrap mass spectrometer (Thermo Fisher 



Scientific) was used in data dependent acquisition MS/MS mode (range 150-1500 mass-to-

charge ratio (m/z)) (Petras et al., 2017).  

2.2 Analyses and annotation of MS/MS data 

We use “feature” to refer to an ion signal (identified by its m/z) detected from a molecule eluting 

off the LC column at a specific time (retention time), for which an MS/MS spectrum is also 

available. The software MZmine 2 (Pluskal et al., 2010) was used for feature extraction and 

alignment across all samples. Alignment was based on unique features in multiple samples being 

linked to a specific LC retention time and m/z value. In total 9904 features were detected and 

assigned an identification number. Feature intensities in each sample were calculated based on 

peak areas of extracted-ion chromatograms (XICs). Procedure and media blanks of this study 

were used to identify and remove “background features” from the data, resulting in 4826 features. 

These features are considered as newly produced in the cultures and were used for subsequent 

statistical analysis. Note that this blank removal procedure would remove features that were not 

produced in the culture but present in the seawater that was used to prepare the media.  

 

To build subnetworks of structurally related features, we used feature-based molecular 

networking via GNPS (Wang et al., 2016; Nothias et al., 2020), which calculates cosine similarity 

scores between all MS/MS spectra of features in a dataset visualized using Cytoscape software 

(Shannon et al., 2003). GNPS also searches public and commercial standard libraries for spectral 

matches - referred to as either library IDs or analogs depending on the specified parameters. 

While library IDs are exact matches, analogs are designated as partial matches to a library 

spectrum, which can successfully characterize features on the chemical class level. ClassyFire 

was used to assign chemical classifications to all structures annotated by spectral matches 

(Djoumbou Feunang et al., 2016) (Fig. S3 A-C). 



 

To assign molecular formulas (MFs) to each feature we used the SIRIUS workflow, which works 

independently from the spectral matches. This workflow uses MS/MS spectra and MS1 (parent 

ion) isotope patterns (Böcker et al., 2009; Dührkop et al., 2019). Subsequently, ZODIAC improved 

the correct MF annotation by reranking possible MF based on the MFs determined for our entire 

dataset (Ludwig et al., 2020). Based on the reranked ZODIAC MFs and their associated MS/MS 

fragmentation trees, CSI:FingerID searches molecular structure databases to predict the structure 

of compounds (Dührkop et al., 2015). Finally, the recently developed machine learning-based tool 

CANOPUS was used to predict the probability (0-1) that each feature (known or unknown) 

belonged to one or more of the 2497 CANOPUS compound classes (Fig. S3D) (Dührkop et al., 

2020). While these in-silico annotation tools created outputs for 91% of all features in this dataset, 

we only considered MFs and compound class predictions with a ZODIAC score of >0.98, which 

resulted in outputs of chemical information for 2710 of the 4826 features (56%). Furthermore, rare 

compound classes with consistently low CANOPUS probabilities (< 0.5) in the dataset were 

discarded, leaving 532 compound classes for further analysis.  

2.3 Deposition of code and data 

Statistical analysis of metabolomics and 16s rRNA data was performed using an in-house 

developed R script, which is available publicly and deposited here: 

https://github.com/Zquinlan/pseudonitzschia_Koester. The mass spectrometry data are 

deposited on the Mass Spectrometry Interactive Virtual Environment (MassIVE) repository 

(massive.ucsd.edu) with accession number MSV000081731 and are publicly available. The 

GNPS job is public and can be found on the GNPS site at the following link: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=96722ff3fec843969ca8b673b5e7fdaf and for 

analog search 



https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ee40a3b66854448ca2b7f117f6b1c22a. The 

16S rRNA data is deposited at the National Center for Biotechnology Information (NCBI) with 

accession number PRJNA776274.  

3.  Results 

3.1. The distinctive microbiomes and metabolomes of Pseudo-

nitzschia cultures 

Generally, Pseudo-nitzschia are classified into two groups based on their valve width or 

transapical axis: delicatissima-size class (< 0.3 μm) and the seriata-size (> 0.3 μm) (Tomas and 

Hasle, 1997). Here, the cultures of the delicatissima-size class - P. hasleana, P. galaxiae and P. 

delicatissima - grew to higher densities than the seriata-size class species - P. multiseries and P. 

subpacifica (Fig S1 and S2A; classification according to Lelong et al. (2012)). The cultures of the 

delicatissima-size class also had higher bacterial counts (attached and free-living) at the time of 

harvesting (Fig. S2C and S2E). The total dissolved metabolite concentrations (measured as DOC, 

Fig. S2F) were only elevated in the samples of P. hasleana, P. galaxiae, which is also reflected 

by the TIC (total ion chromatogram = sum of all XICs in a sample) of the LC-MS/MS analysis of 

their dissolved metabolomes (Fig. S2H). In all cases, the TIC of the whole metabolome samples 

is higher than the TIC of dissolved metabolomes (Fig. S2G). This is consistent with the whole 

metabolome including cellular material and dissolved compounds. Whole metabolome TICs are 

highest in the densely growing delicatissima-size class cultures. 

Both the microbiomes and the metabolomes of each of the five Pseudo-nitzschia species are 

distinct (PERMANOVA analyses, p < 0.001), despite their morphological size class classifications 



and the fact that some species were isolated from seawater on the same day and at the same 

location (see Supplementary Information 1.1). The 16S rRNA sequences clearly distinguished the 

microbiomes of each Pseudo-nitzschia culture (Fig. 2A). The microbiomes were species-specific 

even when including data from an experiment in 2016, where the same cultures of P. multiseries, 

P. subpacifica and P. delicatissima as well as two additional strains of P. subpacifica and P. 

delicatissima were cultured (Fig. S4A; PERMANOVA analysis, p < 0.001). The interannual 

comparison means that we were unable to observe any significant temporal shift in microbiomes 

and that microbiomes were stable for time periods of up to one year. The metabolomes of the 

experiment in 2016 were also species-specific (Fig. S4B; PERMANOVA analysis, p < 0.001). 

Further, microbiomes and metabolomes of the faster-growing delicatissima-sized cultures are 

distinct from the slower-growing seriata-size cultures (PERMANOVA analysis of microbiome, p < 

0.05; PERMANOVA analysis of metabolome, p < 0.001). The difference in the metabolomes is 

equally prominent within the whole metabolome and the dissolved metabolome samples (Fig. 

2B). 

 

Principle Coordinate Analysis (PCoA) of all metabolome samples separated the Pseudo-nitzschia 

species on Axis 1 (54%), whereas the dissolved exudates were differentiated from whole 

metabolome samples along Axis 2 (21%; Fig. 2B). The distinction between dissolved vs. whole 

metabolome (PERMANOVA analysis, p < 0.001) was analyzed the same way as the differences 

between the cultures described in the following and the results are presented and discussed in 

detail in the Supplementary Information (Fig. S5B, Fig. S6, Fig. S7, Fig. S8, Fig. S9D and E and 

Table S1). At a very simple level, these metabolite data can consider differences in presence and 

abundance of features. To account for differences in biomass between the cultures and therefore 

in the relative amount of sample injected into and detected by the mass spectrometer, we 

relativized the metabolite data to TIC and chlorophyll a. Thus, we do not attribute the observed 

differences along Axis 1 to cell densities and associated increases in the absolute metabolite 



concentration but rather to culture-specific metabolomes. The separation between whole and 

dissolved metabolomes on Axis 2 can be explained by metabolites produced by the diatom-

bacteria association with differing intra- and extracellular abundances. 

3.2. The microbiome of Pseudo-nitzschia cultures 

In this experiment, 47 Amplicon sequence variants (ASVs) were identified in the Pseudo-nitzschia 

cultures. A list of all ASVs and their percent abundance in the experiment can be found in Table 

S2. The table additionally identifies if bacteria observed in this study were found to be associated 

with Pseudo-nitzschia previously in the literature. Out of the 47 ASVs, 40 were previously found 

in studies describing the Pseudo-nitzschia microbiome on the genus or family level (Guannel et 

al., 2011; Sison-Mangus et al., 2014, 2016; Amin et al., 2015; Needham and Fuhrman, 2016). 

Based on the mean percent abundance across all culture samples, Gammaproteobacteria was 

the most common class in the Pseudo-nitzschia microbiome of this study (58 ± 21%), within which 

Alteromonadaceae (40 ± 30%) was the most abundant family. The next most abundant class was 

Alphaproteobacteria (26 ± 17%), where Rhodobacteraceae (26 ± 17%) were the dominant family. 

Bacteroidia (11 ± 13%) was the third most common class and consisted exclusively of 

Flavobacteriaceae. Betaproteobacteria were only found in low abundances in the cultures (4.5 ± 

6.2%). 

 

Comparing the differences in microbial communities between Pseudo-nitzschia cultures (Fig. 2C), 

we observed that Gammaproteobacteria dominated the microbiome of P. multiseries and P. 

subpacifica (68% and 90% respectively for the mean of duplicates) but made up only 32% - 57% 

of the community in P. delicatissima, P. galaxiae and P. hasleana. The family Alteromonadaceae 

was most abundant in the P. subpacifica cultures (85%), and also abundant in P. galaxiae (52%), 

P. delicatissima (33%), and P. hasleana (30%), but was completely absent in P. multiseries. 



Alphaproteobacteria were omnipresent, but they were relatively more abundant in the cultures of 

the delicatissima-size class (35% - 44%), than in the seriata-size class (14% and 2.6%). In these 

cultures, the Alphaproteobacteria class was almost exclusively made up of bacteria of the family 

Rhodobacteraceae, but Hyphomonadaceae also appeared in low abundance in the cultures of P. 

delicatissima (0.9%), P. multiseries (0.4%), and P. subpacifica (0.2%). Flavobacteriaceae were 

highly abundant in the cultures of P. delicatissima (21%) and P. hasleana (31%), while rare in P. 

multiseries (4.3%) and P. subpacifica (0.4%), and completely absent in P. galaxiae.  

 

In this experiment 29 of the 47 ASVs (62%) were significantly different between the microbiomes 

of the five Pseudo-nitzschia species (ANOVA, false discovery rate (FDR) adjusted p-value < 0.05; 

Fig. 4). Random forest analysis revealed the importance of the individual ASVs responsible for 

driving the separation between the Pseudo-nitzschia microbiomes. We present FDR adjusted p-

values of ANOVA (Table S2) and random forest variable importance known as mean decrease 

accuracies (MDAs in Table S2; see MDA ranking in Fig. S9A). 

3.3 Chemical features that distinguish Pseudo-nitzschia-culture 

metabolomes 

To identify features that were either common to or distinguishing between the Pseudo-nitzschia-

culture metabolomes, whole and dissolved metabolome samples were examined and treated as 

replicates. Out of the 4826 features produced in the experiment, there were 843 features not 

significantly different between the cultures (ANOVA, FDR adjusted p-value > 0.05) meaning they 

occurred in similar relative abundance in all cultures and are therefore referred to as common 

features. Of these, 40 had spectral matches (Table S3; see mirror plots of following features in 

Fig. S10) including numerous lipid-like compounds such as fatty acyls, glycerolipids, 

glycerophospholipids, and glycerophosphocholines, which are typically associated with cell 



membranes and expected to be present in high abundance in all cultures. β-nicotinamide adenine 

dinucleotide [M+H] and [M+2H] participates in multiple cellular redox processes and is also in high 

abundance in every culture. Further, dipeptides (Glu-Leu [M+H], Lys-Phe [M+H], Glu-Tyr [M+H]) 

and amino acids (tryptophan [2M+H], phenylalanine [M+H], and its derivative homophenylalanine 

[M+H]) are common features. Tryptophan can act as a signaling molecule between Pseudo-

nitzschia and its microbiome (Amin et al., 2015). Other common metabolites were glutathione 

[M+H], an antioxidant found in algae (Dupont et al., 2004; Boysen et al., 2021), protoporphyrin 

[M+H], a precursor for chlorophyll a and heme, and biliverdin [M+H], a green bile pigment. 

  

In contrast, 3983 features (83% of all features produced in the experiment) were significantly 

different between the species-specific metabolomes (ANOVA, FDR adjusted p-value < 0.05) and 

were further considered. A random forest model identified 347 features as primarily driving the 

distinction between the Pseudo-nitzschia-culture metabolomes. These features are referred to as 

distinguishing features (MDAs and cut-off shown in Fig. S9B) and their distribution across all 

samples is shown in Fig. 3. For ease of discussion, all other features produced in the experiment 

are referred to as non-distinguishing features. The separation between cultures was unambiguous 

(random forest prediction error known as out-of-bag error = 0%) for all species except P. hasleana 

and P. galaxiae which could not be separated as firmly (out-of-bag error = 20%; also see Fig. 3). 

 

Of the 347 distinguishing features, only 12 features were annotated as library ID spectral matches 

(Fig. 3; putative names and Classyfire compound classifications labeled in bold). Three library 

IDs are related to DA, which is the toxin produced by Pseudo-nitzschia sp., and in our cultures, it 

was exclusively present in P. multiseries and P. subpacifica. DA was detected as the protonated 

compound [M+H], the [M+H-CH2O2] adduct, and methyl-DA [M+H] (Fig. 5A). All DA features were 

identified as distinguishing features between Pseudo-nitzschia cultures and were more abundant 

in the whole metabolome samples compared to the dissolved metabolomes, which is expected 



since the toxin is produced by the algal cells. In the toxic cultures we also detected 7'-carboxy-N-

geranyl-L-gluatamic acid [M+H], which is a precursor in the biosynthesis of DA (Brunson et al., 

2018). Pantothenic acid [M+H-H2O], also known as vitamin B5, was found primarily in P. 

delicatissima. This vitamin is thought to be ubiquitous (Williams et al., 1933) and was not added 

to the growth media, unlike B1 (thiamine), B7 (biotin) and B12 (cobalamin), which can be limiting 

nutrients. Pantothenic acid is known to be an essential vitamin required for the synthesis of 

coenzyme A and can be produced by eukaryotes as well as prokaryotes (Morimura, 1959; Shah 

and Vaidya, 1977; Fabregas and Herrero, 1990; Marek-Kozaczuk and Skorupska, 2001). In this 

study pantothenic acid and related compounds (Fig. 5C) were relatively more abundant in the 

dissolved metabolome compared to the whole metabolome samples (Fig. 3), which could indicate 

bacterial origin. A more detailed table of all library IDs as well as mirror plots of the query spectra 

compared against the spectra of library standards can be found in Table S3 and Fig. S11.  

 

An additional 31 features had spectral matches as analogs (Fig. 3; Classyfire compound 

classifications labeled). Compounds classified as lysophosphatidylcholines, amino acids and 

derivatives, 2-benzopyrans and dialkyl ethers were enriched in the cultures of P. multiseries and 

P. subpacifica, while peptides and prostaglandins were found in higher abundance in P. hasleana 

and P. galaxiae. 

 

Based on the assigned MFs we can investigate the elemental composition (number and ratios of 

elements) and other chemical properties such as the m/z, retention time (i.e., polarity), double 

bond equivalent (DBE) and aromaticity index (AI). A one-tailed t-test revealed that the 

distinguishing features are significantly enriched in nitrogen atoms and have a higher nitrogen-to-

carbon ratio than non-distinguishing features (FDR adjusted p-value < 0.001). Although the 

positive ionization method is expected to be selective for some nitrogen-containing compounds, 

the nitrogen enrichment in distinguishing features as revealed by the t-test is independent of any 



ionization bias. While the t-test identifies distinguishing features as enriched in nitrogen, it cannot 

reveal the distribution of these features among the Pseudo-nitzschia cultures. In order to 

determine the evenness of nitrogen-containing compounds across the Pseudo-nitzschia cultures, 

we isolated the distinguishing features and chose the most abundant features in each culture. 

Features were considered abundant if their abundance exceeded the mean abundance of all 

distinguishing features in a sample. Of the non-distinguishing features, 61% of the MFs contained 

one or more nitrogen atoms, while the percent of abundant distinguishing features that contained 

nitrogen in each Pseudo-nitzschia culture ranged from 65-83% (Fig. S12).  

3.4 Compound classes that distinguish Pseudo-nitzschia culture 

metabolomes 

The MFs provide important information about the elemental composition of the metabolome, but 

to obtain structural information about the detected features, compound class probabilities 

predicted by in-silico annotations issued through CANOPUS were used. The latter revealed 

chemical-class differences between the algae cultures.  

 

Out of the 532 CANOPUS compound classes, 61 classes were found to have significantly higher 

probabilities for the distinguishing features compared to the non-distinguishing features (one-

tailed t-test FDR adjusted p-value < 0.001) while their probability exceeds 0.5 in at least one 

distinguishing feature.  It stands out that 50 of the 61 compound classes (82%) are nitrogen-

containing by definition (Table S4), whereas only 44% of the total 532 are organonitrogen 

compound classes (Table S5). Next, we determined whether the chemical features separating 

species-specific metabolomes contained unique chemical characteristics. Therefore, we 

calculated the mean compound class probability for the abundant distinguishing features in each 

sample for the 61 CANOPUS compound classes. The PCoA of the resulting data table (Fig. S5A) 



conserved the trends of culture separation observed when examining all features produced in the 

culture (Fig. 2B). A PERMANOVA confirmed that this compound class-based metabolome was 

also species-specific (p-value < 0.001), and in fact, all 61 compound classes were significantly 

different between the cultures (ANOVA, FDR adjusted p-value < 0.05). Based on a subsequent 

random forest analysis most of the top compound classes (22 of 25) responsible for driving 

differences between the Pseudo-nitzschia species are nitrogen-containing by definition (see Fig. 

4; MDAs and cut-off shown in Fig. S9C). While there are distinctive organonitrogen compound 

classes across all Pseudo-nitzschia species, nitrogen heterocyclic compound classes have their 

highest probabilities in the delicatissima-size class cultures (Fig. 4).  

4. Discussion 

The Pseudo-nitzschia cultures grown in this experiment showed different characteristics in 

growth, associated microbiomes, and whole and dissolved metabolomes. The chemical diversity 

of the metabolome could thus be driven by Pseudo-nitzschia size-class similarities, ecosystem 

role and microbiome composition. Common features of all five cultures were metabolites involved 

in basic cell function, such as lipids, cofactors, nucleotides, dipeptides and amino acids, 

antioxidants, and chlorophyll catabolites. Other common compounds are known to influence 

diatom-bacteria interactions such as the signaling molecule tryptophan (Amin et al., 2015). Since 

metabolomes and microbiomes are species-specific, exploring the distinguishing features might 

reveal new compounds involved in diatom-bacteria interaction. We examined the chemodiversity 

of the distinct metabolomes using an untargeted approach. As a result, only 4.7% of features 

could be reliably identified based on matches to existing compound libraries. Thus, we applied an 

in-silico approach that illuminated the compound class affiliations of 56% of detected features. 

Following this analysis, we found that particular compound classes were differentially distributed 

among the Pseudo-nitzschia cultures and that their composition was independent of cell density. 



Furthermore, nitrogen-containing compounds were overrepresented within these distinguishing 

compounds. Finally, a hierarchical cluster analysis enabled the visualization of compound classes 

and microbiome members that shared a similar abundance pattern across the cultures, providing 

a catalog of compound classes that can be targeted in future experiments to be further explored 

as potential mediators in microbial interactions of this ecologically relevant diatom. 

4.1 Different lifestyles of Pseudo-nitzschia size classes 

Even though culture conditions were the same for all cultures, the delicatissima-size class (P. 

delicatissima, P. hasleana and P. galaxiae) and seriata-size class (P. multiseries and P. 

subpacifica) were distinct in terms of growth rate and density, the microbiome, number of attached 

and free-living bacteria cells, toxicity, and their metabolomes. The delicatissima-size species grew 

faster and more densely than the seriata-class species, as reflected in chlorophyll a concentration 

and Pseudo-nitzschia cell counts (Fig. S1 and S2A). Of the five Pseudo-nitzschia species cultured 

here, only P. subpacifica and P. multiseries produced the neurotoxin DA, its derivatives and 

precursors. Both have been previously identified as toxin-producers (Lelong et al., 2012; 

Fernandes et al., 2014; Bates et al., 2018), but the ability to produce DA is not generally 

dependent on size class (Lelong et al., 2012) or cell density. For example, in our experiment 

conducted in 2016 P. subpacifica and P. multiseries attained similar densities and had well-

matched growth curves (Fig. S1C), but only P. multiseries produced DA. In contrast, these 

cultures diverged in their density and growth rates during the experiment in 2017 (Fig. S1B), but 

both produced DA. It is possible that P. subpacifica started producing DA in response to stress 

associated with aging, because about one month after the experiment was completed the 

P. subpacifica stock culture died, likely as a result of normal cell cycle processes. DA production 

has been described to be triggered by numerous stressors, such as nutrient availability, 

temperature, salinity, pH, and irradiance (Lelong et al., 2012), but age and cell cycle processes 



also influence DA production (Sauvey et al., 2019). The ability of P. subpacifica to switch on the 

biosynthesis of DA is interesting and may be widespread. DA production is not dictated by 

phylogenetic relationships either, as P. subpacifica is more closely related to P. hasleana than to 

P. multiseries (Quijano-Scheggia et al., 2020). While the role of DA for Pseudo-nitzschia or its 

microbiome is still not well understood, DA and derivatives are important compositional drivers 

differentiating species-specific metabolomes in this study, in particular by separating toxic from 

non-toxic Pseudo-nitzschia species of this genus. 

 

Overall, the metabolomes of the Pseudo-nitzschia cultures are distinct between the toxin vs. non-

toxin producers. Since the toxin producers tested in this study included only seriata-size species, 

we cannot determine whether size class or toxin production drives the observed similarity of these 

metabolomes. The delicatissima-size cultures also hosted a higher abundance of both, attached 

and free-living bacteria, than the seriata-size classes (Fig. S2C and E) that could be traced to a 

greater flux of dissolved organic matter to support heterotrophic bacteria. However, the ratio of 

attached bacteria to Pseudo-nitzschia cells appeared to be independent of measured DOC 

concentrations since it was similar across cultures (Fig. S2B and F), but the trends during the 

algal growth cycle were variable. The ratio of attached to free-living bacteria shifted to more 

attached bacteria than free-living bacteria when DOC was enriched in the cultures (Fig. S2D). It 

is possible that bacteria in the Pseudo-nitzschia cultures may cycle through attached and free-

living life stages as suggested by Guannel et al. (2011), who showed that the community 

composition of the attached and free-living bacteria was similar. This may be consistent with the 

presence of Flavobacteriaceae for example, in P. hasleana, which have the potential to be motile 

(e.g., Johansen et al., 2002).  



4.2 Microbiomes and metabolomes are species-specific 

Our isolation and growth conditions resulted in Pseudo-nitzschia associated microbiomes that 

were host-specific, independent of when or where the initial diatom cells were isolated, as 

demonstrated by previous work (Guannel et al., 2011; Sison-Mangus et al., 2014). Further, 

Guannel et al. (2011) showed that Pseudo-nitzschia microbiomes are stable during Pseudo-

nitzschia growth cycles and over a long time period (up to a year). Here, we confirm that the 

microbiomes of cultures isolated in 2016 were also stable over a year. The vast majority of 

identified bacteria associated with our Pseudo-nitzschia cultures has been described previously 

in microbiomes of Pseudo-nitzschia cultures or natural blooms, at least on the genus or family 

level (Table S2). Similar microbial communities have also been reported more generally in diatom 

microbiomes (e.g., Fu et al., 2020; Shibl et al., 2020). Overall, the most common families were 

Alteromonadaceae, Rhodobacteraceae, and Flavobacteriaceae, which are generally considered 

to be copiotrophic organisms previously identified as important partners of diatoms (Grossart et 

al., 2005; Kaczmarska et al., 2005; Sapp, Schwaderer, et al., 2007; Sapp, Wichels, et al., 2007; 

Sison-Mangus et al., 2016). Copiotrophic bacteria are anticipated to thrive under high organic 

matter regimes, such as bloom conditions or the phycosphere of diatoms. For example, 

Rhodobacteraceae are well known to be closely associated with diatom phycospheres, and recent 

work has shown Alteromonadaceae can also become enriched in diatom cultures over longer 

periods of time (Shibl et al., 2020). Flavobacteriaceae are commonly found during and following 

algal blooms, where they play important roles in the recycling of nutrients and degradation of 

organic matter including complex carbohydrates (Teeling et al., 2012; Buchan et al., 2014). We 

propose that bacteria growing in our cultures were attached to the phycosphere when Pseudo-

nitzschia cells were isolated or were free-living and were isolated in the micropipette used to 

isolate individual diatom cells. In either case, these communities must have been well adapted to 

thriving under our specific culturing conditions. 



Our results for Pseudo-nitzschia cultures showed that metabolomes of the same genus, cultured 

under the exact same conditions, displayed distinct chemotypes. It may be anticipated that the 

majority of compounds produced by Pseudo-nitzschia are common across species, but this study 

reveals that 83% of features were significantly different in abundance across the five Pseudo-

nitzschia cultures. Here we show both, whole and dissolved metabolomes, are distinct implying 

that extra- and intracellular metabolites are species-specific. We also observed that metabolites 

released into the environment do not simply reflect intracellular composition (also see Johnson et 

al., 2021). While bacterial partners may produce compounds themselves, they also “filter” the 

metabolites that exits the algal cell. Furthermore, hydrophilicity will also determine which 

compounds accumulate in the media. However, the distinct chemotypes could also be the result 

of the unique ecological niches that these different Pseudo-nitzschia species occupy in the 

environment and could drive the distinct microbiomes.  

4.3 Structurally diverse nitrogen metabolites distinguish species-

specific metabolomes 

Following the comprehensive in-silico assignment of chemical information, we were able to 

determine that metabolites largely responsible for the distinction of species-specific metabolomes 

of Pseudo-nitzschia were enriched in both the number of nitrogen atoms and their nitrogen-to-

carbon ratio. In fact, all spectral library matches and the majority of analog matches are identified 

as nitrogenous and are classified as amino acids and derivatives, peptides, 

lysophosphatidylcholines, vitamin related compounds or other amines and amides (Fig. 3). We 

would expect freshly produced organic matter to be enriched in these compounds. Our findings 

showed that nitrogen compounds were prevalent across all cultures, however the compounds 

distinguishing the metabolomes are even more enriched in nitrogen. Also, the majority of 

compound classes separating the metabolomes are nitrogen-containing and cover a range of 



chemical classes (Fig. 4). While the cultures of P. multiseries, P. subpacifica, and P. delicatissima 

were differentiated by metabolites with high compound class probabilities associated with amino 

acids and derivatives as well as simple amines and amides, the diatom species, P. delicatissima, 

P. hasleana and P. galaxiae metabolomes were distinguished by cyclic compounds, such as 

imidazoles, pyrrolidines and lactams. At this point we can only speculate what implications 

metabolites of these compound classes have and why they differ between the Pseudo-nitzschia 

size classes in this study. One potential explanation could be that fast-growing species have a 

higher proportion of compounds associated with growth and cell division, such as nucleic acids, 

pigments and membrane lipids, whereas resource limited strains may be relatively enriched in 

enzymes or may be employing amino acid salvage pathways. Lactams are prevalent in antibiotic 

natural products and may be important for guarding against extensive microbial colonization. 

 

Much research has been done to establish that dissolved organic nitrogen is at least as important 

as or even more important than inorganic nitrogen, in regard to Pseudo-nitzschia growth and 

blooms (Hillebrand and Sommer, 1996; Howard et al., 2007; Cochlan et al., 2008; Loureiro et al., 

2009). These studies focus on certain small molecules, such as urea, glutamate, and glutamine. 

Here, we add evidence that diverse nitrogenous organic compounds could also serve as a nutrient 

source, which in turn could support species-specific microbiomes of Pseudo-nitzschia. Especially 

when inorganic nutrients are depleted, some of these organic nitrogen compounds could sustain 

Pseudo-nitzschia blooms in the form of organic nutrients or inorganic nutrients recycled by 

associated bacteria in the phycosphere or surrounding waters. 

 

There is also evidence that nitrogen-containing organic molecules are preferentially utilized by 

bacteria and relevant compound classes can include nucleosides and amino acids. For example, 

a member of the Polaribacter genus can utilize peptides (Ferrer-González et al., 2021). In our 

study, Polaribacter is also highly abundant in Pseudo-nitzschia cultures that are differentiated 



from other species, because they are enriched in alpha amino acids and derivatives and 

dialkylamines (Fig. 4). Some of the nitrogen compounds that are observed may also serve as 

precursors for secondary metabolite biosynthetic pathways in bacteria. We posit that the diverse 

nitrogen metabolites observed here are important in Pseudo-nitzschia-microbiome interactions 

and therefore ultimately in Pseudo-nitzschia ecology.  

4.4 Illuminating the dark matter of the Pseudo-nitzschia 

metabolome 

In metabolomic studies the gold standard for compound identification is a comparison of both 

chromatographic retention time and MS/MS spectra with an authentic standard, when analyzed 

under identical conditions. This is most commonly done as a targeted approach, where 

metabolites of interest are quantified, and their different abundances can provide insights into 

their role in experiments or the environment. Alternatively, untargeted approaches tend to 

annotate tens to hundreds of metabolites based on local or public libraries and/ or assign 

elemental composition to thousands of metabolites (Wienhausen et al., 2017; Vorobev et al., 

2018; Heal et al., 2019, 2021; Dawson et al., 2020; Fiorini et al., 2020; Johnson et al., 2020, 2021; 

Longnecker and Kujawinski, 2020; Weber et al., 2020; Petras et al., 2021). However, even such 

an approach leaves thousands of detectable compounds uncharacterized as chemical dark 

matter (da Silva et al., 2015), and these compounds might be crucial for microbial interactions, 

biogeochemical processes in the ocean or have potential as natural products in drug discovery. 

 

Less than 5% of all detected features could be annotated by spectral matching with the MS/MS 

spectral libraries, which is typical for marine samples. Therefore, spectral library matches alone 

are insufficient to provide a comprehensive characterization of the metabolome, which hinders 

our ability to identify the chemical tokens exchanged during microbe-microbe interactions. 



Spectral matches of analogs, which allow classification of compounds at the chemical family level, 

increased the annotation of our dataset to 12%. Since compounds with similar MS/MS spectra 

cluster together in subnetworks within our broader molecular network, we know they are 

structurally related and can infer chemical information when a spectral match is present for that 

subnetwork. Taking this approach and propagating the annotation provided by library ID or analog 

matches within molecular subnetworks, we obtained chemical information for about 25% of the 

features in this dataset. Nonetheless, our global molecular network demonstrates how only some 

subnetworks are well annotated, while the majority remain unknown (Fig. 6A). This means the 

chemical diversity of the metabolome is not comprehensively captured by the use of spectral 

libraries alone and the majority of the metabolome remains as dark matter.  

Using in-silico tools that work independently of spectral libraries, we attempted to expand the 

chemical space annotated within our global Pseudo-nitzschia-microbiome network. We 

successfully illuminated some of the detectable chemical dark matter by providing MFs and 

compound class affiliations for 2710 features, i.e., 56% of the features produced in the cultures. 

If compound class affiliations are propagated throughout the subnetworks where an in-silico 

annotation is present, 75% of features could be annotated on the compound class level. Overall, 

in-silico annotations covered our global network more comprehensively (Fig. 6B). Furthermore, 

the tools used in this study can predict chemical information for truly unknown compounds. As an 

example, ZODIAC was not only able to improve the correct assignment of MFs, Ludwig et al. 

(2020) also demonstrated that two novel MFs were found in the dataset of the current study: a 

brominated phosphocholine and a polyhalogenated compound.  

To examine the quality and level of chemical annotation provided by the in-silico workflow we 

turned to the subnetwork that contained DA (Fig. 5A). We found that the MFs and CANOPUS 

chemical class information including specific functional group information (e.g., high probabilities 

for azacyclic compounds, and more specifically pyrrolidine carboxylic acids and kainoids), which 

are entirely independent of library identifications, were indeed correct. The pantothenic acid 



subnetwork (Fig. 5C) has probabilities for azacyclic and benzenoids close to zero, but probabilities 

are high for alcohols and polyols and N-acyl amides, which agrees with the known structure of 

pantothenic acid. CSI:FingerID predicted the correct structure as the top candidate for the DA, 

methyl-DA, pantothenic acid and its analog (Fig. S13A-D).  

We then turned our attention to two subnetworks where no features were linked to spectral 

matches (Fig. 5B and 5D). These subnetworks were also interesting because their features are 

unique to only two Pseudo-nitzschia species. Furthermore, all features had relatively high m/z 

values, which can typically hinder accurate MF assignments and therefore, subsequent 

compound class and structure predictions (see Table S6 for assigned MF). In both subnetworks, 

the compound classes azacyclic compounds and benzenoids had high probabilities for all 

features. The CSI:FingerID similarity of the predicted structures is lower for these compounds 

(46-51%; Fig. S13E-H) than for the known compounds DA and pantothenic acid (78-86%; Fig. 

S13A-D), because the compounds are likely to be truly unknown and absent from structural 

databases. While we cannot predict the whole structure, we are able to manually extract 

information for putative substructures common to the features in the subnetworks (Fig. 5B and 

5D) by combining the various in-silico annotation tools including the fragmentation trees provided 

by SIRIUS and further exploring molecular structures predicted by CSI:FingerID (Fig. S13) 

(Dührkop et al., 2015, 2019, 2020). Subnetwork I contains benzene rings and the putative 

substructure of dimethyl-dihydropyridine-carboxaldehyde. The natural product literature does not 

contain reports of similar compounds and thus we cannot provide definitive identification of the 

substructure or hypothesize about the function of these compounds. The compounds in 

subnetwork II are putatively annotated as tetrapyrroles. Pigments, vitamin B12, and heme are all 

common metabolites containing tetrapyrrole moieties and they can originate from bacteria or 

microalgae and serve a variety of purposes for the cell. 

 



Such a manual interrogation of the available data reinforced our confidence in the utility of our 

method and the compound class level information propagated for the global network. 

Furthermore, this dataset had the added benefit of serving to independently validate the approach 

we took to identify compounds that differentiate the interrogated samples. In this case, we could 

anticipate how the whole and dissolved metabolomes would differ, and the dataset and statistical 

approach supported this prediction. That is, the difference between the dissolved and whole 

metabolome was driven primarily by features identified as cell membrane compounds for 

example, such as phospholipids, which are expected to have low solubility (see detailed 

description in the Supplementary Information). Since the bioinformatic tools and novel analytical 

workflow produced expected results in this validation, it gave us the confidence to extend to a 

more open-ended question regarding the chemical nature of compounds that distinguished the 

metabolomes of individual Pseudo-nitzschia species (discussed in the previous section).  

 

To our knowledge, this is the first study in which complex marine metabolomes have been 

assigned structural information at the compound class level at the scale of thousands of 

metabolites. The structural motifs identified for the unknown metabolites in this study could inform 

the choice of specific model compounds to examine in experimental systems. Since the data is 

publicly available and accessible for exploration and re-analysis (Jarmusch et al., 2020) and 

MS/MS spectra can be searched for (equivalent to WebBLAST for sequencing data; (Wang et al., 

2020)), this study contributes to a fast-growing repository of MS/MS data which will transform our 

ability to use metabolomics to understand environmental systems in the future. Thanks to culture-

based catalogs such as the data produced in this study, the origin of metabolites of interest in the 

environment may be revealed. The combination of public data sets and diverse cheminformatic 

tools for both annotation and analysis of mass spectrometry data are critical for illuminating dark 

matter and will eventually lead to a better understanding of microbial communities in the 

environment. 
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Fig. 1. Workflows demonstrating (A) the experimental design and sampling procedure and (B) 

computational tools used to analyze and annotate the mass spectra. Five different Pseudo-

nitzschia species cultures were grown in biological duplicates and harvested at the end of the 

exponential growth phase. Cell pellets were used for 16S rRNA sequencing and microscopy 

samples for enumeration of attached and free-living bacteria were sampled during the growth 

phase. Metabolomic samples were taken in technical duplicates (50mL) for the whole 

metabolome (acidified to pH2 and sonicated) and for the dissolved metabolome (filtered and 

acidified to pH2). All samples were solid phase extracted and analyzed by non-targeted high-

resolution liquid chromatography tandem mass spectrometry (HR LC-MS/MS) in data dependent 

acquisition mode. (B) MZmine 2 was used for feature extraction and calculation of feature 

intensities (XIC). GNPS is used for feature-based molecular networking and searching the public 

and commercial standard libraries for spectral matches. ClassyFire assigns chemical 

classification to the features with spectral matches. For each feature SIRIUS ranks molecular 

formula (MF) candidates based on MS1 isotope patterns and MS/MS spectra analysis; ZODIAC 

re-scores MF candidates of individual features by considering all features in the dataset to 

increase the number of correct MF annotations. The machine learning-based tool CANOPUS 

predicts probabilities of over 2,497 compound classes of each feature. 

 

Fig. 2. PCoA plots showing the dissimilarities between (A) microbiomes and (B) metabolomes, 

color coded by the five Pseudo-nitzschia species. The relative abundance of 16S data was 

angular transformed and shows clear distinction between Pseudo-nitzschia species 

(PERMANOVA p < 0.001). MS1 features are TIC and chlorophyll a relativized and normalized 

(angular transformation). While filled circles correspond to the whole metabolome samples, empty 

circles represent dissolved metabolome samples. PC1 and PC2 reveal the separation between 

Pseudo-nitzschia species and dissolved versus whole metabolome respectively as indicated by 

the arrows. PERMANOVA analysis proved distinct Pseudo-nitzschia metabolomes as either 



dissolved metabolites only, the whole metabolomes only, or the dissolved and whole metabolome 

together, as well as dissolved vs. whole metabolome (all p < 0.001). (D) depicts the distribution 

of the 16S microbial community on the class and family level for each Pseudo-nitzschia species 

by taking the mean abundance of culture replicates.  

 

Fig. 3. Two-way cluster analysis showing the distribution of distinguishing features driving the 

separation between Pseudo-nitzschia species cultures. Area under the peak of MS1 features are 

TIC and chlorophyll a relativized and normalized (angular transformation). Z-score across 

dissolved (DM) and whole metabolome (WM) samples were calculated and are depicted in gray 

(see legend). Clusters were colored according to which Pseudo-nitzschia cultures the features 

were most abundant in. Features are labeled with putative compound names of their spectral 

library matches (library IDs, bold) and their chemical classifications (library IDs and analogs; 

using ClassyFire). Identification levels following the convention proposed by Sumner et al. (2007) 

are denoted by superscript following the compound name (see Supplemental Information 1.3.4 

for definition). A more detailed table including adduct, measured precursor mass-to-charge ratio, 

the mass difference to the standard and all other gathered information about the given spectral 

match can be found in Table S3. Mirror plots of the spectral matches are shown in Fig. S11. Red 

and gray squares indicate if the annotated compound is nitrogen-containing or cyclic, respectively.  

 

Fig. 4. Two-way cluster analysis showing the distribution of mean compound class probabilities 

for abundant distinguishing features (bold) and relative abundance of 16S data (italic). For 

compound classes dissolved metabolite samples were used and the mean of technical duplicates 

was calculated. Values depicted in gray were calculated z-scores for biological duplicates of the 

five Pseudo-nitzschia cultures. Clusters were colored according to the Pseudo-nitzschia species 

where values were the highest. The red and gray squares indicate if compound classes are 

nitrogen-containing or cyclic by definition. The colored dots indicate bacteria class.  



 

Fig. 5. Molecular subnetworks of DA, pantothenic acid and two unknown molecular families. 

Every node represents a feature labeled with the mass-to-charge ratio (m/z); the distribution of 

relative abundance across Pseudo-nitzschia cultures is visualized by pie charts. Features related 

to each other (cosine > 0.7) are connected by edges and result in a subnetwork. Subnetwork (A) 

has two library ID matches (DA and methyl-DA) and one analog match (methyl-DA). The other 

nodes represent adducts such as [2M-H]+, covalently bound dimers and other DA derivatives. 

Compound class probabilities for the features are represented as bar graphs next to the nodes. 

Probabilities were high for azacyclic compounds (cyclic compounds with at least one nitrogen 

atom), pyrrolidine carboxylic acids and kainoids, which can all be confirmed by the known 

structure of DA. The pantothenic acid subnetwork (C) includes a library ID match with the adduct 

[M+H-H2O], an analog match, which is likely to be pantothenic acid with an acetate addition, and 

two other related features. The probabilities for azacyclic and benzenoids are close to zero, but 

probabilities are high for alcohols and polyols and N-acyl amides, which is coherent with the 

known structure. Subnetwork (B) and (D) represent unknown features only. While no spectral 

matches are available, the combination of in-silico annotation tools allowed the annotation of MFs 

(Table S6) and compound classes. Here, probabilities are high for the compound classes 

azacyclic compounds and benzenoids for both, but we were able to identify different substructures 

of the unknown subnetwork. 

 

Fig. 6. Illuminating the dark metabolome of Pseudo-nitzschia-microbiome associations. Global 

network demonstrating the spatial distribution of (A) spectral matches (library IDs and analogs) 

and (B) in-silico annotation using the SIRIUS workflow (ZODIAC MFs, CANOPUS compound 

class predictions and CSI:FingerID structures). While GNPS library IDs are available for 4.7% of 

features, analog search increases this number to 12%. The spectral matches cover some 

subnetworks extensively, but most subnetworks have no annotations at all. Since subnetworks 



are structurally similar, we can propagate chemical classifications when spectral matches are 

present in a subnetwork, which means 25% of features can be classified (not shown). The SIRIUS 

workflow is able to annotate spectra absent from the spectral libraries and using the conservative 

cut-off of ZODIAC score >0.98, 56% of features were annotated. These features cover the global 

molecular network more comprehensively and if chemical classes are propagated within 

subnetworks, we have structure information about 75% of features in the dataset. 
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